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Abstract 

This paper describes the finite difference approach (FDM) to visualization of the struc-
ture called Euler elastica in 1691 by Jacob Bernoulli. This shape is popular in some manufac-
turing applications: for example, in structures made from thin, flexible strips of wood or plas-
tic. The shape of each strip, between two endpoints, is called elastica. Another application 
concerns thin metal bended strips for architectural decorated framework that looks aestheti-
cally pleasing. Also an important application of Euler elastica is the technology of forming 
various patterns for decorating architectural spaces. Usually the analytic solution of this 
problem is based on the variational method, elliptic integral theory and so on. The visualiza-
tion approach described in this paper is very compact and agile. In the case considered, the 
approach concerns bending of the elastica with a fixed left endpoint and a free right endpoint. 
Bending is provided by specifying the tangent angles of both endpoints. There are some nu-
merical examples of Euler elastica in the paper.  
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1.        Introduction 
The elastica task is formulated as follows: what shape do we obtain when an elastica is bent? 
Here the term elastica means an ideal infinitesimally thin elastic rod without stretching on a 
plane. Leonard Euler essentially solved this problem in 1744 but similar problems are still be-
ing studied by researchers [1]. Euler obtained differential equations for stationary rod config-
urations and described their possible qualitative types. These configurations are called Euler 
elastica [2, 3].  
Since then up to now, the problem solution related to Euler elastica energy has had a wide 
range of applications in computer graphics, engineering geometry, in mechanics, engineering, 
control theory, approximation theory, molecular biology, nanotechnology and other art and 
industrial areas. Euler elastica energy functional have also wide application in computer vi-
sion and image processing to restore the image distorted by multiplicative noise [4]. 
Work [5] presents a statistical application of Euler elastica to create a model of DNA and 
molecules of large polymer set. The authors of work [6] describe a new method for creating 
double curvature surfaces for architectural design by means of Euler elastica. This method 
provides a direct design of the workflow using a hot-blade robotic cutting, a new robotic 
manufacturing method that provides high-speed production of double curvature molds. Addi-
tionally to perfect the structure, when arbitrary surfaces are converted to a geometry suitable 
for cutting with a hot blade, the method allows architects and designers to explore the unique 
architectural potential of this approach in manufacturing. Thus, the development of methods 
for constructing Euler elastica is of inescapable interest. 
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Let us briefly consider the formulation of the problem of Euler elastica form finding. Assume 

that Cartesian system (x; y) in two-dimensional plane is given [2]. Let an arbitrary curve 

be parameterized as γ(t) = (x(t); y(t)), t  [0; t1], and let its endpoints have coordinates ai = 
(xi; yi), i = 0, 1. Denote by θ the angle between the tangent vector to the curve γ and the posi-
tive direction of the axis x. Further, let the tangent vector at the endpoints of γ have coordi-
nates vi = (cos θi; sin θi), i = 0, 1, see Fig. 1. 
  

 
Fig. 1. Stationary configuration of elastic rod 

   
Then the required curve γ(t) = (x(t); y(t)) is determined by a trajectory of the following con-
trol system: 

    (1) 

   (2) 

  (3) 
For an arc-length parametrized curve, the curvature is, up to sign, equal to the angular veloci-

ty:  whence we obtain the functional [3] 

    (4) 
The problem of functional (4) analytical solution regarding the relations (1) - (3) is a difficult 
mathematical issue. Analytical approaches are often based on the use of various mathemati-
cal procedures leading to Jacobi functions, that is, to complex combinations of elliptic func-
tions [1-3] and elliptic integrals of the 1st and 2nd kind [7]. Such representation is extremely 
inconvenient for visualizing Euler elastica by computer means. On the other hand, since the 
end of the last century the fast-paced electronic computing facilities have provided a solid ba-
sis for applying numerical methods to solve various problems [8]. The efficient numerical so-
lution of differential and equations plays an ever-increasing role in state-of-the-art technolo-



gy. Both the demand and the computational power available from current computer hard-
ware have stimulated the rapid development of numerical methods for this kind of equations 
[9], [10]. The discrete numerical approach to solve the Euler elastica problem is proposed in 
this work. 

2.        Finite difference formulation 
Obviously, the finite difference scheme can be used to give numerical implementation for the 
variational problem (1-3, 4) solution. When a finite difference method (FDM) is used to treat 
numerically a differential equation, the differentiable solution is approximated by some grid 
function, i.e., by a function that is defined only at a finite number of points of collocation that 
lie in the studied domain and its boundary. Each derivative that appears in the differential 
equation has to be replaced by a suitable divided difference of function values at the chosen 
collocation points [9]. Thus, FDM uses the approximation of derivatives by the set of algebra-
ic forms. This converts the differential equation into an approximated algebraic problem, 
which can be solved by a finite computational procedure. 
Let the required curve have length L, then integral (4) is given in (0; L) interval. To replace 
integral (4) by sum of n integrals, we subdivide further this interval into n sub-intervals with 
length l = L / n.  

     (5) 
  

 
Fig. 2. Discreet model of elastic rod 

  

Assume that boundary conditions of two endpoints are , 

 and the coordinates xn, yn of right hand endpoint are unknown. If we ne-

glect curve linearity of each curve interval (see Fig. 2), we can replace function  by the fol-
lowing finite difference  

     (6) 
This allows us to obtain the presentation of energy integral (4) by the following approximate 
finite sum 

    (7) 
To find unknown tangent angles we should consistently take the derivatives of function J by 
θi (see form (7)). Finally we can obtain the resolving system. 



    (8) 
The sparse symmetry matrix [A] has a 3-diagonal band structure and is shown in the Table 1 
together with the right hand vector {B}. 
  

Table 1 

0 1 2 ... i-1 i i+1 ... n   B 

1 2 -1     0         θ0 

2 -1 2     0           

...         ...           

i-1       2 -1           

i 0 0 ... -1 2 -1 ... 0   0 

I+1         -1 2         

...         ...           

n         0     2   θn 

The structure of matrix [A] and vector {B} 
  
It is easy to notice that there is no need to use special procedures to solve the equation system 
in Table 1 because each tangent angle is the arithmetic mean of two neighboring angles as can 
be seen below 

     (9) 
This circumstance provides the possibility to apply a very efficient and fast computational 
scheme. If endpoint tangent angles θ0 and θn are given, we can calculate θ1 angle by the for-
mula that as appears from the recurrent application of expression (9) starting from endpoint 
n in the opposite direction of the elastic rod 

    (10) 
Since θ1 angle is known then the entire angles can be calculated step by step by the following 
recurrent formula 

     (11) 
Finally, expression (11) allows obtaining the entire angle vector {θ}. Further, we can calculate 
nodal co-ordinates of collocation points ai by the discreet analogue of expression (1) 

    (12) 

3.        Numerical Samples 
There are some numerical samples in this chapter. The set of samples is obtained for elastica 
of the initial rectilinear shape, restrained at the left endpoint and for the following parame-
ters: rod length L = 500 pixels, the number of subintervals n = 200. All the samples are cal-
culated with different values of endpoint angles θ0 and θn in degrees. Each sample includes 
the family of 60 curves obtained with steps Δθ0 and Δθn of boundary angles. In order to create 
each family of curves we initially apply formula (10) to calculate θ1 angle for each curve. Then 
we can calculate co-ordinates of co-location points by expressions (11) and (12). A very similar 
and efficient program based on the numerical scheme described in this paper and HTML5 / 
Javascript languages has been created in the form of a web-page. The program list is present-
ed below. 



<!DOCTYPE html> 
<html> 
<head> 
<meta charset=utf-8 /> 
<title>Draw Euler elastica</title> 
</head> 
<body> 
<canvas id="DemoCanvas" width="1200" height="800"></canvas> 
<script> 
let cx = document.querySelector("canvas").getContext("2d"); 
var x_0 = 400; 
var y_0 = 300; 
var nn = 200; 
var len = 500/nn; 
for (var j = 0; j < 60; j++) { 
     var alfa_n = (180 - 5 * j) * Math.PI/ 180.0 ; 
     var alfa_0 = (0 + 5 * j) * Math.PI/ 180.0 ; 
     var alfa_1 = (alfa_n + (nn - 1) * alfa_0) / nn; 
     var alfa_i = alfa_0; 
     var alfa_i_1 = alfa_1; 
     var alfa_i_2 = alfa_0; 
     var x_beg = x_0; 
     var y_beg = y_0; 
     cx.beginPath(); 
     cx.moveTo(x_0, y_0); 
     for (var i = 0; i < nn-1; i++) { 
         cx.lineTo(x_beg + len * Math.cos(alfa_i), y_beg  
                          + len * Math.sin(alfa_i)); 
         x_beg = x_beg + len * Math.cos(alfa_i); 
         y_beg = y_beg + len * Math.sin(alfa_i); 
         alfa_i = 2 * alfa_i_1 - alfa_i_2; 
         alfa_i_2 = alfa_i_1; 
         alfa_i_1 = alfa_i; 
     } 
  cx.stroke();} 
</script> 
</body> 
</html> 
  



a) 

 

 

b) 

 

 



c) 

 

 

d) 

 

 



e) 

 

 

Fig. 3. The sample families of elastica with different boundary conditions 
The curve families are graphically presented in Figure 3. It is easy to spot that in all the sam-
ples the curves converge into an ideal circle the way boundary tangent vectors converge into 
co-linear vectors that makes the elastica closed. It is consistent with the similar conclusion in 
works [11, 12]. 

4.        Conclusion 
The paper describes a fast and efficient method that is equivalent to the minimization of Eu-
ler elastica energy functional. It is an extremely difficult problem to find the task solution by 
minimizing the energy functional due to its non-convexity, nonlinearity and higher order with 
derivatives. The method is fast to produce the solution and simple to implement. It seems 
quite encouraging that this kind of algorithm could have reliable application in a number of 
real industrial problems related to scientific visualization and computer graphics. 
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